Camera Calibration & Radiometry

Plan

* Reading:
—Chapter 2, and sections 3.2, 5.4, Forsyth & Ponce
—Chapter 10, Horn

« Optional reading:
—Chapter 4, Forsyth & Ponce

« Handouts: Revised Problem Set 1

February 12, 2008

* First part: how positions in the image relate to 3 d
positions in the world.

* Second part: how image intensities relate to surface and
lighting properties in the world.

Last Lecture:

Camera calibration

» Use the camera to tell you things about the
world.

— Relationship between coordinates in the world
and coordinates in the image: geometric
camera calibration.

(Later we’ll discuss relationship between
intensities in the world and intensities in the
mmage: photometric camera calibration.)

Motivation for camera calibration:

relating image measurements to positions out in the world

Frames from video data Tracked feature points

Inferred 3-d shape of building

Combining extrinsic and intrinsic
salibration parameters

Intrinsic
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Other ways to write the same equation

pixel coordinates

world coordinates
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Calibration target

The Opti-CAL Calibration Target Image

hittp:/www. Kinetic.be.ca/CompVision/opti- CAL. hitnl

Camera calibration

From before, we had these equations m -P
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relating image positions, m, - P
u,v, to points at 3-d positions P (in e
homogeneous coordinates): v s
m, - P

So for each feature point, i, we have:
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Camera calibration

Stack all these measurements of I
(m —um,)-F =0
(m, =vam,)-F =0

into a big matrix:
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We want to solve for the unit vector m (the stacked one)
that minimizes |Om{"

The minimum eigenvector of the matrix QTQ) gives us that
(see Forsyth&Ponce, 3.1)

Camera calibration

Once you have the M matrix, can recover the
intrinsic and extrinsic parameters as in
Forsythé&Ponce, sect. 3.2.2.
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What makes a valid M matrix?

A projestion matrix can be writien explicitly us a function of its five intrinsic parameters (o,
A, ug, wp, and By and its six exirinsic ones (the three angles defining 7 and the three coordinates
of &), namely,
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wherer!, rl, and ] denote the three. rows of the matrix R and r,, 1, and 1, are the coordinates of
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s M is a perspective projection matrix iff Derf(4) =0

Today’s class

» Second part: how the infensities in the
image relate surface and lighting properties
in the world.

light

Irradiance, E

surface

+ Light power per unit area (watts per square
meter) incident on a surface.

+ The units tell you what to integrate over to
find the energy impinging on a given area.

+ E times pixel area, times exposure time
gives the pixel intensity out (for linear
sensor response)

light

Radiance, L

surface

« Amount of light radiated from a surface into
a given solid angle per unit area (watts per
square meter per steradian).

+ Note: the area is the foreshortened area, as
seen from the direction that the light is
being emitted.

+ Informally, radiance tells you the
“brightness”.

Solid angle

* The solid angle subtended by a cone of rays
is the area of a unit sphere (centered at the
cone origin) intersected by the cone.

+ All possible angles from a point covers 47w
steradians.

* A hemisphere covers 2n steradians, ete.

What’s the solid angle subtended by
this patch, area A, seen from P?

account for

‘ / A foreshortening

y..-' -

Acos(6)
—

~R?
Divide by R squared
to convert the area to
what you'd sec on a
unit sphere

Multiply by cos(8) to




Image irradiance/scene radiance
relationship

¢+ The definition of scene radiance 1s
constructed so that image rradiance 1s
proportional to scene radiance.
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How the brightness depends on the
surface properties: BRDF

* Bidirectional reflectance distribution
function tells how bright a surface appears
when viewed from one direction while light
falls on it from another.
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Figure 10-7. The bidirectional reflectance distribution function is the ratao of

the radiance of the surface patch as viewed from the direction (e, de) Lo the
trradiance resulting from illuminatien fram the direction [6;, 6]
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BRDF = f(0.4,.60..4,) =——<%
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How does the world give us the
brightness we observe at a point?

Integrate all the source radiance
impinging on the surface

Solid angle of
this patch:

S =sin(B,) 56, 5,

Let radiance per solid
angle be:

L. 9)

The the radiance from this
patch toward the origin is:

E(0,.¢,)sm(,) 00, og)

Accounting for extended light sources

The total irradiance of
the surface is:

ol
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Accounting for the
foreshortened area of
center patch relative to
illuminant.

The total radiance reflected
from the surface patch is:
Zxi2

L6,.¢)= [ [ 1(6,..6..4,) E(6,.4)sin(6,) cos(6,) d6, dg,

What you’d like to pull out from L.

Pixel intensities may be proportional to
radiance reflected from the surface patch:

LO,.¢4.) = [ [ (6.4,.0..4.) E@,.¢,) sin(8)) cos(6,) d6, d,

That’s hard, so let’s focus on special cases for the rest of this lecture.
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Special case BRDF: Lambertian
reflectance

BRDF is a constant. These surfaces look equally
bright from all viewing directions.

f( an ¢)__

Radiance reflected from Lambertian surface
illuminated by point source located at (9x,¢s)
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Special case BRDF: Lambertian
reflectance

BRDF is a constant. These surfaces look equally
bright from all viewing directions.

f( an ¢)__

Radiance reflected from Lambertian surface
illuminated by point source located at(@s,af:)
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=Y E cos cos
= 6.

Special case BRDF: Specular Reflection

 Surface looks bright only when the viewing angles equal
the illumination angles

_80.-0)5(4.— ¢~ 7)
f(ai’¢i’9w¢e)_ sin(é’i)cos(@) Horn 10.6

» Radiance reflected from a specular surface illuminated
by point light source locates at  (6,,4,)

x a2
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Reflectance map

* For orthographic projection, and light sources at
infinity. the reflectance map is a useful tool for
describing the relationship of surface orientation
to image intensity.

* Describes the image intensity for a given surface
orientation.
+ Parameterize surface orientation by the partial
derivatives p and q of surface height z.
& Oz
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 Useful in recovering surface shape from images

Relate surface normal to p & q

r.=[Lo.pl" 1 =[0Lq]

Unit normal to surface:
i_(p —q )
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Retl map for point source (in
direction s ) Lambertian surface

UIIILI vector to source:
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For a Lambertian surface, L(6,,¢,)= }/ E cos(6, )= cos(0,)
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Picture of Lambertian refl map

Figure 10-13. The reflectance map is a plot of brightness as a Function of
surface orientation. Here it is shown as a confour map in gradient space. In the
«case of 2 Lambertian surface under point-source illumination, the contours turn
out to be nested cenic sections. The maximum of Rip,q) oceurs at the point

(P.9) = (ps,qs), found inside the nested canic sections, while R(p,q) = 0 all
2long the line on the left side of the contour map.

Horn, 1986
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What constraints are there for
form of reflectance map?

—Radiance cannot be negative
—Defined only for 0<6,<z/2
For values outside this range, the radiance is zero.

— Maximum value is 1.

Linear Reflectance Map

Figure 10-14. In the case of the material in the maria of the moon, the re-
Aectance map can be closely approximated by a function of a linear eombination
of the components of the gradient. The contours of constant brightness are par-
allel straight lines in gradient space.

Horn, 1986

Linear shading: 1% order terms
of Lambertian shading

Lambertian surface illuminated by point source
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See Pentland, IJCV val. 1 no. 4, 1990.
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Linear shading
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linear shading quadratic terms higher-order terms

Pentland 1990, Adelson&Freeman, 1991




Advantages of linear shading

Linear relationship between surface range map

and rendered image.

Rendering is easy: differentiate with respect to

azimuthal light source direction.

« Applies: linear sources, or shallow illumination
angles and Lambertian surface.

+ Allows for very simple inverse transformation

from rendered image to surface range map. which

we’ll discuss later with shape-from-shading

material.

Knowing the reflectance map, can
we mfer the gradient at any point?

There is a unique mapping from surface orientation,
(p.q), to radiance given by the reflectance map

Inverse mapping is not unique

An infinite number of orientations give rise to the same
brightness

Brightness has one degree of freedom, orientation has
two

To recover two unknows, we need two equations — two
images taken with different lighting will result into two
equations

Generic reflectance map

Figure 10-13. The reflectance map is a plot of brightness as & Fmetion of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of & Lambertian surface under point-source ilumination, the contours turn
ut to be mested conic sections. The maximum of R(p,q) ocours at the point

(24) = (ps,qa), Found inside the nested conic sections, while R{p,q) = 0 all
along the ne on the left side of the conbour map.

Horn. 1986

Photometric stereo
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Fixed camera and object positions.
Take two or more images under different lighting conditions.

frame 2 frame 11 ‘e

Approach 1

Photograph the object with a calibration
object in the picture, or available in another
photograph.

Use the multiple responses of the
calibration object to the different light
sources to form a look-up table.

Index into that table using the multiple
responses of the unknown object.

Handles arbitrary BRDF.




Approach 2

» Assume a particular functional form for the
BRDF (Lambertian). Assume known light
source positions (point sources at infinity as
specified locations).

* Analytically determine the surface slope for
each location’s collection of image
intensities.

Photometric stereo

Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different paint sources, there are at most. two surface orientations that pro-
duce a partienlar pair of hrightness valucs. These are found at the intersection
of the corresponding contours in twn superimposed reflectance maps.

See Forsyth&Ponce sect. 5.4 for procedure. In HW: don’t
need to integrate the surface normals to get the shape.

From the image under the 1 lighting
condition (Lambertian)

Pixel intensity at position x,y surface radiance
R
in i image. L1(6,.8,)= Y/, E cos(6, )= cos(6,)

} / =i-§
I, (x, y) =KL, (x, y)

=kp(x, y)N(x_, ) "§i

surface albedo
surface normal
i light source direction

Combining all the measurements
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Solve for g(x,y). May be 1ll-conditioned
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A fix to avoid problems in dark areas: pre-
multiply both sides by the image intensities

(L (x.3) 0 0 Y IL(x.))
| o I(x,y) - 0 IL(x,v)
i : : : 0 :
0 0 0 I(x. NI (x.3))
I(x.y) 0 0 YsT)
0 ILixy) - 0 |sT|.
= : : . 0 : g(x, 1)
0 0 0 L(x.»}sT)




Recovering albedo and
surface normal

Surface shape from surface gradients

p(x.y)=g(x.»)

o &)
MO )

Can you do it?
What are the ambiguities? - Additive height constant
What are the constraints?

« no surface discontinuity — the surface is smooth

So for your homework, we’ll leave the
computation at the gradients.




